SCINTILLATION LIGHT DETECTION IN LARGE LIQUID ARGON TPCS

Ben Jones, University of Texas at Arlington

Large liquid argon TPCs are central to the US neutrino physics program

MicroBooNE simulations

Simulated µBooNE performance

Plots from **FERMILAB-THESIS-2015-17**

Expect verification with experimental data soon!

Real MicroBooNE PMT data

Real MicroBooNE PMT data

Real MicroBooNE PMT data

MicroBooNE system

TPB Efficiency

WLS efficiency of pure TPB has been quantified – at 128nm, about
 1.2 visible photons out for 1 UV photon in.

TPB coating efficiency

C.M. Ignarra FERMILAB-THESIS-2014-31

TPB time response

- A 250 nm and above, TPB response is prompt (1-2 ns)
- Recent work shows that at 128 nm, TPB has a long time tail
- Comparison with scintillation profiles gives possible interpretation:
- Scintillating secondary electron liberated from the molecule, exciting TPB triplets
- This also helps explain the 1.2 shifting efficiency

E. Segreto Phys. Rev. C 91, 035503

	Decay time (ns)	Abundance (%)
Instantaneous component	1–10	60 ± 1
Intermediate component	49 ± 1	30 ± 1
Long component	3550 ± 500	8 ± 1
Spurious component	309 ± 10	2 ± 1

Environmental sensitivity of TPB

- We found that TPB is very sensitive to UV light and degrades in performance
- Also yellows in color with exposure
- Components in modern
 LArTPCs must last 10s of years

Journal of Instrumentation > Volume 7 > July 2012

C S Chiu et al 2012 JINST7 P07007 doi:10.1088/1748-0221/7/07/P07007

Environmental effects on TPB wavelength-shifting coatings

C S Chiu, C Ignarra, L Bugel, H Chen, J M Conrad, B J P Jones, T Katori and I Moult

7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4

Photodegradation Mechanism of TPB

NMR investigations show spontaneously evolved photo-initiating impurities in TPB

The impurity is present at low level in lower commercially available grades of TPB

Monitoring decay with GCMS

Working with GCMS we identified the degradation mechanism – radical mediated photo-oxidation to benzophenone

Demonstrated delayed degradation using radical mediators confirms this interpretation

Oxygen is required. Submerged in LAr, should be safe from decay.

More on this later

Journal of Instrumentation > Volume 8 > January 2013

B J P Jones et al 2013 JINST 8 P01013 doi:10.1088/1748-0221/8/01/P01013

Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

B J P Jonesa, J K VanGemertb, J M Conrada and A Pla-Dalmaub

Bo Vertical Slice Test Stand

- Test bed for the MicroBooNE optical system including:
 - Cryogenic photomultiplier tubes
 - Base electronics
 - Wavelength shifting plate
 - High voltage system + interlocks
 - Cables and splitters
 - Readout electronics
 - Cryostat feedthrough
 - Trace impurity monitors
 - Etc...

Also used for liquid argon R&D work for MicroBooNE, DUNE, etc

Removing H₂O and O₂

Water removed by 4A molecular sieves

Very large effective surface area for molecules with d < 4A

water d ~ 2.75 A

Oxygen removed by activated copper granules

Oxygen trapped by oxidizing the copper

 $Cu + \frac{1}{2}O_2 \rightarrow CuO$

10 ppt levels of water and oxygen impurity can be achieved

Effect of Nitrogen: 1. Quenching

Scintillation process

Competing Excimer Dissociation Process

Rate dependent on the density of excimers and density of impurity

Quenching due to Nitrogen

Much stronger effect on triplet state – longer time for collisions to occur

Affects time constant as well as total light yield and fast / slow ratio

Systematic study shows that nitrogen should be kept < 2 ppm to prevent significant quenching

2010 JINST 5 P06003 WArP collaboration

Effect of Nitrogen: 2. Absorption

A measurement of the absorption of liquid argon scintillation light by dissolved nitrogen at the part-per-million level

B J P Jones, C S Chiu, J M Conrad, C M Ignarra, T Katori and M Toups
Published 24 July 2013 • © 2013 IOP Publishing Ltd and Sissa Medialab srl • Journal of Instrumentation,
Volume 8, July 2013

Top View

Implications for LArTPC Detectors

What should drive the design? (my opinion...)

What should drive the design? (my opinion...)

Maximize spatial resolution.

What should drive the design? (my opinion...)

Maximize spatial resolution.

Within the constraints:

- Fixed \$\$
- Keep within detector real-estate
- Don't hurt the TPC system

By doing the following:

- More channels per \$
- More light per channel

I am only going to highlight only the ideas that seem to achieve this.

More channels per \$

Denver Whittington – LIDINE2015 talk

Light Guides for Large-Area Photon Detection

- Large active-area UV-collecting light guides
 - Acrylic or polystyrene imbued with wavelength-shifting compound
 - Based on design pioneered by MIT
 - Dip-coating w/ TPB in solvent (after studying many different methods)
 - 430 nm light propagated by total internal reflection to end

- Embed PD paddles inside anode plane assembly behind collection wires
 - Large photosensitive area with small photocathode area
 - Low-voltage SiPM bias
 - Easily scalable
- PMTs → SiPMs drives unit cost down
- Removes HV requirement
- But mandates additional collectors (eg lightguides)

More channels per \$:

This is an event from the ICARUS TPC:

More channels per \$:

This is an event from the ICARUS TPC:

Crosstalk from the PMT system to the wire planes

Readout PMT system through crosstalk alone?

arxiv:1507.01997 Z. Moss et al

 Proposal to remove PMT readout electronics system altogether and purely read out via crosstalk

 No readout electronics means more \$ for sensitive elements

Back to light guides:

Denver Whittington – LIDINE2015 talk

Light Guides for Large-Area Photon Detection

- Large active-area UV-collecting light guides
 - Acrylic or polystyrene imbued with wavelength-shifting compound
 - Based on design pioneered by MIT
 - Dip-coating w/ TPB in solvent (after studying many different methods)
 - 430 nm light propagated by total internal reflection to end

- Embed PD paddles inside anode plane assembly behind collection wires
 - Large photosensitive area with small photocathode area
 - Low-voltage SiPM bias
 - Easily scalable
- PMTs → SiPMs drives unit cost down
- Mandates additional collectors (eg lightguides)
- Collector requires optimization

Improved TPB Coating

Jarrett Moon – LIDINE2015 talk

Increase TPB/acrylic ratio

```
0.5 \text{ g TPB} \rightarrow 0.1 \text{ g TPB}
50 \text{ mL toluene} \rightarrow 50 \text{ mL toluene}
10 \text{ mL ethanol} \rightarrow 12 \text{ mL ethanol}
1 \text{ g acrylic} \rightarrow 0.1 \text{ g acrylic}
```

Initial test done in air, and showed drastic improvement

But for such a seemingly drastic improvement, the proof is in the pudding

$$(pudding = LAr)$$

Competing light guide designs

Denver Whittington – LIDINE2015 talk

WLS Fibers + TPB Radiator

TPB Dip-Coated Acrylic

Improvement by chemical stabilization

Improved initial performance and stabilization can be achieved with radical mediators

Interpretation: Partial TPB->BP decay in solution during coating preparation

More exploration of stabilizers could yield brighter TPB-PS coatings

Journal of Instrumentation > Volume 8 > January 2013

B J P Jones et al 2013 JINST 8 P01013 doi:10.1088/1748-0221/8/01/P01013

Photodegradation mechanisms of tetraphenyl butadiene coatings for liquid argon detectors

B J P Jonesa, J K VanGemertb, J M Conrada and A Pla-Dalmaub

LArIAT-style foils

Reflector foil before/after TPB evaporation

Test-mount of mock foil masks.

Will Foreman – LIDINE 2015 talk

Reflector-based solution (LArIAT)

Advantages of foils

- Detector is small, so cosmic background not problematic.
- LArIAT collection all light at one spot – foils homogenize detector response (good!)
- Detector goal is to study charge and light emission – so get lots of it (good!)
- On the flipside, very little spatial information in the reflected light.

Will Foreman - LIDINE 2015 talk

The ARAPUCA

Ettore Segretto - LIDINE 2015 talk

Xe Doping

- Addition of xenon can produce excitation transfer which moves light to earlier times.
- Common myth: "TPB is brighter at LXe wavelengths" not true!
- But bringing late light to earlier times after the pulse makes it more easily collectable, and more useful.
- ~100 ppm required → multiple tons for DUNE. Not a cheap proposal.

Summary

- Liquid argon TPCs are an important part of the US neutrino physics program
- Light collection systems are important for background rejection, drift-position measurement
- Significant R&D was required to realize presentgeneration experiments
- R&D for next-generation experiments should focus (IMO) on spatial specificity for geometrical tagging
- This can be achieved with more channels per \$ and more light per channel
- There are old ideas, new ideas, and ideas yet-to-be-had that can make this happen.